33 lines
902 B
Python
33 lines
902 B
Python
|
import networkx as nx
|
||
|
import matplotlib.pyplot as plt
|
||
|
import sys
|
||
|
import os
|
||
|
import subprocess
|
||
|
import base64
|
||
|
if not os.path.exists('onionr.sh'):
|
||
|
os.chdir('../')
|
||
|
sys.path.append("src/")
|
||
|
from streamfill import identify_neighbors
|
||
|
|
||
|
G = nx.Graph()
|
||
|
size = 20
|
||
|
|
||
|
onions = []
|
||
|
p = subprocess.Popen(["scripts/generate-onions.py", str(size)],
|
||
|
stdout=subprocess.PIPE,
|
||
|
stderr=subprocess.PIPE)
|
||
|
for line in iter(p.stdout.readline, b''):
|
||
|
line = line.decode().strip()
|
||
|
onions.append(line)
|
||
|
G.add_node(line[:4])
|
||
|
|
||
|
for onion in onions:
|
||
|
neighbors = identify_neighbors(onion, onions, 0.25 * size)
|
||
|
for neighbor in neighbors:
|
||
|
G.add_edge(onion[:4], neighbor[:4])
|
||
|
|
||
|
#nx.draw(G, with_labels=True, font_weight='bold')
|
||
|
#nx.draw_shell(G, with_labels=True)
|
||
|
#nx.draw_random(G, with_labels=True)
|
||
|
nx.draw_kamada_kawai(G, with_labels=True)
|
||
|
plt.savefig("graph.png")
|