rewrite with skyfield
parent
2184a5b077
commit
bc5f5932f1
|
@ -94,7 +94,7 @@ def putmoon(pctphase, lines, atfiller, hemisphere): # pylint: disable=too-many-
|
|||
|
||||
# rotate char upside-down if needed
|
||||
char = char.translate(str.maketrans("().`_'",
|
||||
")(`.^,"))
|
||||
"!!!!!!"))
|
||||
|
||||
if char != '@':
|
||||
putchar(char)
|
||||
|
|
185
xaphoon.py
185
xaphoon.py
|
@ -1,103 +1,43 @@
|
|||
#!/usr/bin/env python
|
||||
from datetime import datetime, timezone
|
||||
import math
|
||||
"""Xaphoon - Displays the phase of the moon as well as other related information."""
|
||||
|
||||
import time
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import ephem
|
||||
from datetime import datetime, timezone
|
||||
from skyfield import almanac
|
||||
from skyfield_data import get_skyfield_data_path
|
||||
import skyfield.api
|
||||
|
||||
from pyphoon import putmoon
|
||||
|
||||
# Second resolution for culmination/illumination calculations
|
||||
DAY_INCREMENT=1/86400
|
||||
# Initialize certain skyfield parameters globally
|
||||
sf_load = skyfield.api.Loader(get_skyfield_data_path(), expire=False) # loader
|
||||
ts = sf_load.timescale(builtin=False) # timescale
|
||||
eph = sf_load('de421.bsp') # ephemerides
|
||||
earth, sun, moon = eph['Earth'], eph['Sun'], eph['Moon'] # moooon
|
||||
|
||||
def to_deg(rad):
|
||||
"""Convert radians to a displayable integer number of degrees."""
|
||||
return round(math.degrees(rad))
|
||||
|
||||
def to_timestr(date, local=True):
|
||||
"""Convert a pyephem date to a time string in the local time zone."""
|
||||
def to_timestr(t, date=False, local=True):
|
||||
"""Convert a skyfield time to a time string, optionally in the local time zone."""
|
||||
t = t.utc_datetime()
|
||||
if local:
|
||||
date = ephem.localtime(date)
|
||||
else:
|
||||
date = date.datetime()
|
||||
return date.strftime("%H:%M:%S")
|
||||
|
||||
def find_target_rising(moon, me):
|
||||
"""Return the relevant moonrise to base display and calculations off of."""
|
||||
if moon.alt == 0: # i would love a better way to do this
|
||||
me = me.copy()
|
||||
me.date = me.previous_rising(moon)
|
||||
return me.next_rising(moon)
|
||||
if moon.alt > 0:
|
||||
return me.previous_rising(moon)
|
||||
# moon.alt < 0
|
||||
return me.next_rising(moon)
|
||||
|
||||
def cmp_culmination(moon, me, t):
|
||||
"""Determine whether the culmination is before, after, or at t.
|
||||
|
||||
Returns 0 if t is the culmination, -1 if t if culmination is before t, or 1
|
||||
if culmination is after t. Assumes there is exactly one peak elevation,
|
||||
which seems to cause error of up to about 7 seconds due to float precision.
|
||||
"""
|
||||
me.date = t - DAY_INCREMENT
|
||||
moon.compute(me)
|
||||
e1 = moon.alt
|
||||
me.date = t
|
||||
moon.compute(me)
|
||||
e2 = moon.alt
|
||||
me.date = t + DAY_INCREMENT
|
||||
moon.compute(me)
|
||||
e3 = moon.alt
|
||||
|
||||
if e1 > e2:
|
||||
return -1
|
||||
if e3 > e2:
|
||||
return 1
|
||||
return 0
|
||||
|
||||
def find_culmination(moon, me, rising, setting):
|
||||
"""Finds culmination via binary search.
|
||||
|
||||
Assumes rising and setting are from same pass.
|
||||
"""
|
||||
moon = moon.copy()
|
||||
me = me.copy()
|
||||
t1 = rising
|
||||
t3 = setting
|
||||
while True:
|
||||
t2 = (t1 + t3) / 2
|
||||
match cmp_culmination(moon,me,t2):
|
||||
case 0: return ephem.date(t2)
|
||||
case -1: t3 = t2
|
||||
case 1: t1 = t2
|
||||
|
||||
def cmp_illumination(moon, me, t):
|
||||
"""Determine whether the moon is waxing, waning, or either full or new.
|
||||
|
||||
Returns 0 if the moon is either full or new, -1 if moon is waning, or 1
|
||||
if moon is waxing.
|
||||
"""
|
||||
moon = moon.copy()
|
||||
me = me.copy()
|
||||
me.date = t - DAY_INCREMENT
|
||||
moon.compute(me)
|
||||
i1 = moon.moon_phase
|
||||
me.date = t + DAY_INCREMENT
|
||||
moon.compute(me)
|
||||
i2 = moon.moon_phase
|
||||
|
||||
if i1 > i2:
|
||||
return -1
|
||||
if i1 < i2:
|
||||
return 1
|
||||
return 0
|
||||
t = t.astimezone()
|
||||
if date:
|
||||
return t.strftime('%Y-%m-%d %H:%M:%S')
|
||||
return t.strftime('%H:%M:%S')
|
||||
|
||||
def main():
|
||||
"""Main function
|
||||
|
||||
Parses arguments, calculates values, and displays them.
|
||||
"""
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("lat",
|
||||
help="Observer latitude")
|
||||
parser.add_argument("long",
|
||||
help="Observer longitude")
|
||||
help="Observer latitude",
|
||||
type=float)
|
||||
parser.add_argument("lon",
|
||||
help="Observer longitude",
|
||||
type=float)
|
||||
parser.add_argument("elevation",
|
||||
help="Observer elevation in meters",
|
||||
type=int)
|
||||
|
@ -111,47 +51,42 @@ def main():
|
|||
type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
now = ephem.date(datetime.fromtimestamp(args.time, timezone.utc))
|
||||
print(f"Current time: {to_timestr(now)}")
|
||||
t = ts.from_datetime(datetime.fromtimestamp(args.time, timezone.utc)) # current time
|
||||
|
||||
me = ephem.Observer()
|
||||
me.date = now
|
||||
me.lat = args.lat
|
||||
me.lon = args.long
|
||||
me.elevation = args.elevation
|
||||
print(f"Current time: {to_timestr(t)}")
|
||||
|
||||
moon = ephem.Moon(me)
|
||||
obs_geo = skyfield.api.wgs84.latlon(args.lat, args.lon,
|
||||
elevation_m=args.elevation) # geographic position vector
|
||||
obs = earth + obs_geo # barycentric position vector
|
||||
|
||||
az = to_deg(moon.az)
|
||||
el = to_deg(moon.alt)
|
||||
print(f"Az: {az}° El: {el}°")
|
||||
moon_apparent = obs.at(t).observe(moon).apparent()
|
||||
el, az, _ = moon_apparent.altaz('standard')
|
||||
print(f"Az: {az.degrees:.0f}° El: {el.degrees:.0f}°")
|
||||
|
||||
rising = find_target_rising(moon, me)
|
||||
setting = me.next_setting(moon)
|
||||
|
||||
print (f"Rise: {to_timestr(rising)} Set: {to_timestr(setting)}")
|
||||
|
||||
culm = find_culmination(moon, me, rising, setting)
|
||||
|
||||
print(f"Culmination: {to_timestr(culm)}")
|
||||
|
||||
direction = cmp_illumination(moon, me, now)
|
||||
match direction:
|
||||
case -1:
|
||||
direction_indicator = '-'
|
||||
case 0:
|
||||
direction_indicator = ''
|
||||
case 1:
|
||||
direction_indicator = '+'
|
||||
|
||||
print(f"Phase: {moon.moon_phase:.0%}{direction_indicator}")
|
||||
|
||||
# Convert illumination percentage and waxing/waning status to percent through full cycle
|
||||
if direction < 0: # waning
|
||||
full_cycle_phase = 1 - (moon.moon_phase / 2)
|
||||
# Find relevant moonrise. el is based on apparent location, so accounts
|
||||
# for atmospheric refraction. y shouldn't be needed unless user is near
|
||||
# one of the poles, so ignored for now. First [0] discards y (second
|
||||
# element of tuple); second [] selects from array of moonrises/moonsets
|
||||
if el.degrees > 0:
|
||||
# Moon is up. Find last moonrise in the past 24 hours.
|
||||
moonrise = almanac.find_risings(obs, moon, t-1, t)[0][-1]
|
||||
else:
|
||||
full_cycle_phase = moon.moon_phase / 2
|
||||
# Moon is not up. Find first moonrise in the next 24 hours.
|
||||
moonrise = almanac.find_risings(obs, moon, t, t+1)[0][0]
|
||||
|
||||
print(putmoon(full_cycle_phase, 20, '@', 'northern' if me.lat > 0 else 'southern'))
|
||||
# Find first moonset in the next 24 hours after moonrise.
|
||||
moonset = almanac.find_settings(obs, moon, moonrise, moonrise+1)[0][0]
|
||||
print(f"Rise: {to_timestr(moonrise)} Set: {to_timestr(moonset)}")
|
||||
|
||||
transit = almanac.find_transits(obs, moon, moonrise, moonrise+1)[0]
|
||||
print(f"Transit: {to_timestr(transit)}")
|
||||
|
||||
phase = almanac.moon_phase(eph, t)
|
||||
print(f"Phase: {phase.degrees:.0f}°")
|
||||
|
||||
illum = moon_apparent.fraction_illuminated(sun)
|
||||
print(f"Illumination: {illum*100:.0f}%")
|
||||
|
||||
print(putmoon(phase.degrees/360, 21, '@', 'north' if args.lat > 0 else 'south'))
|
||||
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue